Представленная математическая формулировка задачи соответствует общей задаче линейного программирования, поэтому для ее решения следует применять универсальный метод, например симплексный.
При решении задач симплекс-методом все неравенства (1) необходимо обратить в равенства. Для этого введем свободные переменные х1, х2, …,х6 ≥ 0.
Тогда
х11+х21+х31+х41+х1=10
х12+х22+х23+х42 +х2=15
14х11+15х12+х3=150
7х21+5х22+х4= 100(3)
15х31+17х32 +х5=200
9х41+9х42+х6=250
Qmax=14х11+15х12+7х21+5х22+15х31+17х32+9х41+0х1+0х2+0х3+0х4+0х5+0х6 ® max. (4)
Свободные переменные х1 и х2 выражают количество неиспользованных автомобилей из числа имеющихся, а х3, …, х6 – объем неперевезённого груза. В целевую функцию они входят с коэффициентами, равными нулю.
Все данные полученных уравнений заносятся в специальную симплекс-таблицу (таблица 2).
Каждая строка в симплекс-таблице отражает по порядку все ранее написанные уравнения, а по столбцам таблицы располагаются коэффициенты, с которыми переменные (х11, х12, …, х6) входят в соответствующее уравнение. Если какая-либо переменная не входит в рассматриваемое уравнение, то в таблице для нее проставляется нуль. В индексной строке записываются коэффициенты при соответствующей переменной в выражении целевой функции с обратным знаком.
Алгоритм вычислений симплекс-методом состоит в следующем.
Шаг 1. Выбираем в индексной строке наибольшее отрицательное число. Ему соответствует ключевой столбец. В таблице 2 это столбец х32 с числом 17.
Шаг 2. Определяем ключевую строку. Для этого разделим числа столбца свободных членов на соответствующие им положительные числа ключевого столбца: 10/0 = ∞; 15/1 = 15; 150/0= ∞; 200/17 = 11,76; 250/0 = ∞. Из всех полученных частных выбираем наименьшее (200/17 = 11,76). Оно определяет ключевую строку.
На пересечении ключевой строки и ключевого столбца находится ключевое число (17).
Шаг 3. Переходим к построению следующей симплекс-таблицы, в которой в первую очередь заполняется главная строка. Главная строка располагается там, где в предыдущей симплекс-таблице находилась ключевая строка, а числа главной строки определяются путем деления чисел ключевой строки на ключевое число. Вместо прежнего переменного в столбце переменных записывается переменное соответствующего ключевого столбца. Поэтому для главной строки таблицы 3 в столбце переменных указано 11,76.
В том столбце, который в предыдущей таблице был ключевым, все клетки заполняются нулями, за исключением клетки, где находилось ключевое число. Там всегда будем иметь 1 по расчету чисел главной строки. Те столбцы, у которых в клетках ключевой строки (см. табл. 2) записаны нули, переписываются без изменений. Аналогично правило и для строк. Если в ключевом столбце строке соответствует нуль, то она переписывается в следующую таблицу без изменений.
Для остальных клеток (в столбце свободных членов клетка строки х2, х3, х2, х5, х2 и в индексной строке клетка столбца х32) определяются производные числа (Пр) по правилу:
Пр = Вч – КсКст/Кч,
где Вч – выбранное число;
Кс – соответствующее число в ключевой строке;
Кст – соответствующее число в ключевом столбце;
Кч – ключевое число.
Теперь известны все числа, и построение симплекс-таблицы (см. табл. 2) закончено. Так как в индексной строке еще сохранились отрицательные числа, то решение продолжается, повторяются все операции, описанные выше. Вычисления проводятся до той поры, пока в индексной строке одной из таблиц не окажутся числа больше или равные нулю. Опуская промежуточные решения, покажем сразу матрицу оптимального распределения (таблица 4).
В заключение можно отметить, что изложенным методом можно решать и другие задачи. Например, можно определить минимальное число автомобилей, необходимое для перевозки запланированного количества грузов. Для этого нужно отбросить ограничения по количеству автомобилей и ввести расчет по изложенной схеме до тех пор, пока не будет вывезен весь запланированный груз.
Исходная симплекс-таблица Таблица 2
Столбец переменных |
Столбец свободных членов |
Строка переменных | |||||||||||||
Х11 |
Х12 |
Х21 |
Х22 |
Х31 |
Х32 |
Х41 |
Х42 |
Х1 |
Х2 |
Х3 |
Х4 |
Х5 |
Х6 | ||
Х1 |
10 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
Х2 |
15 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
Х3 |
150 |
14 |
15 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
Х4 |
100 |
0 |
0 |
7 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
Х5 |
200 |
0 |
0 |
0 |
0 |
15 |
17 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
Х6 |
250 |
0 |
0 |
0 |
0 |
0 |
0 |
9 |
9 |
0 |
0 |
0 |
0 |
0 |
1 |
Индексная строка |
_ |
-14 |
-15 |
-7 |
-5 |
-15 |
-17 |
-9 |
-9 |
0 |
0 |
0 |
0 |
0 |
0 |
Еще о транспорте:
Механизированная уборка снега со станционных путей
На участках первой и второй категорий зависимости при снегопадах и метелях возможны такие большие снежные отложения, что они могут стать причиной дезорганизации движения поездов и маневровых операций на станциях. Для очистки пути от снега на перегонах широко используются снегоочистители, а для удал ...
Количественный анализ ДТП
Количественный анализ обеспечивает получение цифровых показателей состояния аварийности, их составление по месту совершения (страна, регион, область, город, район, улица, участок дороги, перекресток и пр.) и времени их совершения (год, месяц, день, час и пр.) с целью выявления общих тенденций измен ...
Оценка точности места
Навигационная безопасность мореплавания обеспечивается счислением пути судна и периодическими обсервациями только с учётом их точности, которая традиционно оценивается среднеквадратической погрешностью СКП (М), вероятность которой составляет Р = 63%. Однако "Стандартами точности судовождения&q ...