Выполним расчет напряжения действующего в коренном листе рессоры.
<[G]=1000 MПа
где
– учитывает неравномерность распределения напряжения по листам.
Здесь
мм4 - момент инерции рессоры по сечению центрового болта;
мм4 – момент инерции листа (коренного);
a=1.3 – коэф., учитывающий повышение напряжения в коротком листе;
мм – расстояние от нейтрального сечения листа рессоры до крайнего волокна, работающего на растяжение.
При выполнении проекта ставилась задача спроектировать заднюю рессорную подвеску с подрессорником грузового автомобиля, за автомобиль-прототип был выбран автомобиль ГАЗ-3307.
В первом разделе курсового проекта были рассмотрены и проанализированы конструкции подвесок грузовых автомобилей.
Схема проектируемой подвески была принята во втором разделе курсового проекта. Также в этом разделе было приведено обоснование сделанного выбора. Остановили свой выбор на многолистовой рессорной подвеске.
В третьем разделе курсового проекта рассчитали упругую характеристику проектируемой подвески. Получили максимальную нагрузку на подвеску, которая составила 58614 Н, полный ход подвески составил 194 мм. Поскольку в проектируемой рессорной подвеске отсутствует рычажная система, то упругая характеристика упругого элемента совпадает с упругой характеристикой подвески.
В том же разделе были рассчитаны конструктивные параметры проектируемого упругого элемента, были определены такие параметры: как число листов рессоры, ширина листов, толщины листов, полная длина рессоры составила 1696.5 мм.
В четвертом разделе была рассчитана характеристика демпфирующего элемента подвески. Для построения характеристики были определены коэффициенты сопротивления амортизатора на ходах сжатия и отбоя. Производилось приближенное построение характеристики амортизатора, были определены диаметр поршня амортизатора 44 мм, диаметр штока 17.3 мм, и максимальную температуру стенок амортизатора 163.4 ْ С.
В пятом разделе приведены прочностные расчеты упругого элемента подвески.
Еще о транспорте:
Ведомость углов поворота, прямых, круговых и переходных кривых
При проектировании плана трассы для намеченных по карте вариантов определяют величины всех элементов, которые заносятся в ведомость углов поворота, прямых и кривых. Чтобы заполнить графы ведомости, необходимо: определить пикетажное положение вершин углов поворота; рассчитать закругления; определить ...
Разработка модели транспортной сети и маршрутов движения между
корреспондирующими пунктами
В данном разделе курсового проекта производится разработка международного автомобильного маршрута перевозки груза. В качестве критерия оптимальности будем использовать минимизацию приведенного времени на перемещение, рассчитываемого по формуле где – время на движение, ч; – коэффициент, представляющ ...
Определение потребной мощности и выбор электродвигателя механизма подъёма
Nст=*0,6=*0,6=95,6 кВт где Nст- статическая мощность электродвигателя, кВт Nк- номинальная мощность электродвигателя, кВт ηобщ – общий к.п.д. грузоподъёмного механизма; ηобщ=0,8 Так как электродвигатели грузоподъемных машин работают в повторно-кратковременном режиме, то производят пересче ...