Очевидно, что хорош не тот корабль, который может плавать вообще, а только тот, который в состоянии ответить предъявляемым к нему требованиям по автономности, грузоподъемности, скорости хода и управляемости в простых и сложных условиях плавания. Во все времена от начала мореплавания человек пытался как можно лучше приспособить судно к взаимодействию с окружающей водной и воздушной средой. А именно в шторм эти две среды – водная и воздушная, взаимодействуя между собой, порождали наиболее опасные факторы. Это грозные волны под шквально-ураганными ветрами.
Длительные время опыт строительства речных и морских судов приобретался методом проб и ошибок, что приводило к весьма продолжительным историческим срокам в эволюции судостроения. Нередко достигнутый опыт погибал вместе с его носителями – моряками. Последователи вынуждены были повторять их путь или создавать что-либо новое в области судостроения и мореплавания.
Первое, к чему пришли моряки мыслящие: борьба с разбушевавшейся стихией абсолютно безнадежна. Гребцы в штормовых условиях довольно быстро выбиваются из сил, а весла, если их не убрать, ломаются и калечат гребцов. Парус обрывает, мачту ломает – в итоге на поверхности штормового моря остается неуправляемое судно с экипажем, грузом и пассажирами, молящими всех известных богов о пощаде. И вот в такие тревожные часы, кроме молитв и воззваний, истинные моряки отмечали, что широкие и округлые корпуса с высокими скулами способны удерживаться лагом на крупной волне, практически не заливаясь, а круглые, как бочонки – менее всего кренит и ломает под ударами волн, даже если на зауженных палубах нередко разгуливают грозные волновые потоки. Непротивление штормовой стихии, как главное правило непротиворечивого проектирования, ярко проявляется в форме корпуса и общекорабельной архитектуре всех наиболее известных исторических кораблей и судов океанского плавания.
Появление парусных судов неограниченного района плавания привело к эпохе Великих географических открытий, когда в течение нескольких десятилетий конца XV – начала XVI веков испанский флот посетил практически все удаленные районы Мирового океана. Но уже в середине XVI века «Непобедимая испанская армада» потерпела сокрушительное поражение от штормовой стихии в плавании вокруг островов Великобритании, когда при отсутствии минимального навигационно-гидрографического обустройства побережья, точных навигационных карт и необходимых знаний о гидрометеорологических условиях района плавания, большая часть кораблей великой эскадры оказалась на камнях и мелях вблизи побережья.
И ныне существует немало прибрежных акваторий Мирового океана, необеспеченных гаванями – убежищами от штормовых ветров. При плавании в таких открытых акваториях корабли и суда могут полагаться только на опыт капитанов и на собственные штормовые мореходные качества. В определенной степени к таким опасным районам относятся прибрежные акватории вблизи Сахалина, Камчатки и Курильских островов, где штормовая мореходность является важнейшим условием поддержания эффективности морских транспортных коммуникаций и обязательным требованием для судов и морских инженерных сооружений, занимающихся освоением морских природных ресурсов.
Еще о транспорте:
Метод организации производства ТО и ТР
Наибольшее распространение к настоящему времени получили три метода организации производства ТО и ремонта подвижного состава: специализированных бригад, комплексных бригад и агрегатно-участковый. Метод специализированных бригад предусматривает формирование производственных подразделений по признаку ...
Расчет навигационных элементов на калькуляторе
Для расчета навигационных элементов на калькуляторе применяются следующие формулы: - УВ=н-ЗМПУ, - УСр= sinУВ *60*UVи, - Wр=cosУВ*U+Vи, - tр= *60 – ответ получаем в минутах, 3.4 Расчёт потребного запаса топлива на полёт с учетом полета на запасной аэродром Потребный запас топлива (Qпотр) включает ос ...
Построение кинематической схемы трансмиссии
Расчет КПД и передаточных чисел. Рис. 2. Кинематическая схема трансмиссии КПД трансмиссии: , где коэффициент холостых потерь коэффициент эксплуатационной загрузки (=1) КПД цилиндрической пары количество работающих пар КПД карданного шарнира число шарниров Таблица 2. Принятые значения коэффициентов ...