Третья передача. Она обеспечивается включением тормоза Т3. Здесь под нагрузкой работают планетарные ряды 7, 11 и 14.
Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:
При включении тормоза Т3 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18=0; nв14= nс11= nс18.
Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:
Из схемы ПКП следует, что
Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 11 и 7 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим
Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:
Четвертая передача. Она обеспечивается включением тормоза Т4. Здесь под нагрузкой работают планетарные ряды 7, 11, 14 и 18.
При включении тормоза Т4 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18; nв14= nс11= nс18; nа18=0.
Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:
Из схемы ПКП следует, что
Из уравнения кинематики для планетарного ряда 7,14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим
Из уравнения кинематики для планетарного ряда 11 с учетом уравнений связи определим
Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:
Частоты вращения всех центральных звеньев ПКП и
относительные частоты вращения сателлитов, об/мин
Таблица 5
|
Передача |
1 |
2 |
3 |
4 |
|
Нагруженные ряды ПКП |
7, 11, 14 |
7, 11, 14 |
7, 11, 14 |
7, 11, 14, 18 |
|
nа7=nвщ |
2000 |
2000 |
2000 |
2000 |
|
nа11= nа14=nвм |
758 |
962 |
1258 |
1563 |
|
nв7= nв11 |
0 |
328 |
667 |
1163 |
|
nс14= nс6= nв18 |
1000 |
641 |
0 |
744 |
|
nв14= nс11= nс18 |
393 |
0 |
503 |
1072 |
|
nа18 |
2378 |
2096 |
1142 |
0 |
|
nВ07 |
4000 |
3344 |
2667 |
1674 |
|
nВ011 |
1630 |
1363 |
1270 |
860 |
|
nВ014 |
4604 |
3848 |
3020 |
1964 |
|
nВ018 |
2170 |
2291 |
1798 |
1172 |
Еще о транспорте:
Механизм подъема
Механизм подъема предназначен для подъема и опускания груза на необходимую высоту с заданной скоростью и удержания груза на любой, требуемой условиями технологического процесса, высоте. Разрывное усилие в канате: Sp=K*Smax=6*26,6=159,6 кН где K – коэффициент запаса прочности, зависящий от режима ра ...
Математическая модель неустановившегося движения судна
Основным уравнением задачи в этом случае является уравнение второго закона Ньютона в проекции на ось координат “X”. m*a = F(1) Здесь: m – масса тела; а = dV/dt – ускорение тела; F – сумма всех сил, действующих на судно, в проекции на ось “X”. Равнодействующая сила F складывается из двух сил: R – со ...
Контроль качества ТО и ТР автомобилей
Технический контроль – это проверка соответствия продукции или процесса, от которого зависит соответствие качества продукции установленным требованиям. Сущность контроля заключается в двух этапах, т.е. получение первичной и вторичной информации. Первичная информация отражает фактическое состояние о ...